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INTRODUCTION: Themeninges are a three-layer
membrane that covers the central nervous
system (CNS): The outermost layer, the dura
mater, is attached onto the skull periosteum;
the two inner layers, the arachnoid and the pia
mater, cover the brain cortex. The meningeal
compartment hosts both innate and adaptive
immune cells, providing constant immuno-
surveillance of the CNS border regions. Given
its strategic location, meningeal immunity is
a key component of neuroimmune disorders.
Recent studies have investigated the origin and
dynamics of meningeal myeloid cells. However,
little is known about meningeal B cells.

RATIONALE: To investigate the phenotype of
meningeal B cells, we used different high-

throughput techniques, such as single-cell RNA
sequencing (scRNA-seq), cytometry by time of
flight (CyTOF), and single-cell B cell receptor
sequencing (scBCR-seq). We further corrobo-
rated our finding by flow cytometry and con-
focal imaging. We determined the origin of
meningeal B cells by bone marrow transplan-
tation (BMT) and parabiosis experiments.
Lastly, we investigated howmeningeal B cells
change during aging.

RESULTS:Wecharacterized themousemeninges
using scRNA-seq, which revealed thatmeningeal
B cells encompass multiple stages of their de-
velopment, spanning pro-B to mature B cells.
Identical subsetswere found in thebonemarrow
(BM), but not in the blood. CyTOF and flow

cytometry further confirmed this result, demon-
strating that early B cell subsets that are
normally present in the BM are also found in
the meninges under homeostasis. BMT with
selective reconstitution of the skull BM showed
that meningeal B cells are derived from the
calvaria; namely, the hematopoietic region
located within the cranial flat bones. We then
performed parabiosis between wild-type and
CD19-Tomatomice, which express the tdTomato
fluorescent protein specifically in B cells. This
experiment demonstrated that circulating B cells
minimally infiltrated themousemeninges under
homeostasis.Usingconfocal imaging,weshowed
that B cells migrate from the calvaria to the
meninges through specialized vascular channels
traversing the inner skull bone. Interactome
analysis of our scRNA-seq data highlighted a
network ofmolecular communications between
meningeal B cells and dura fibroblast-like cells
(FLCs). Notably, we showed that FLCs express
high levels of Cxcl12, whereas dura early B cells
express its receptor Cxcr4. Expression of these
molecules in the respective populations was
validated by imaging and flow cytometry. The
CXCL12–CXCR4 axis is required for the sur-
vival and differentiation of early B cells in the
BM, and the samemechanismmay be present
in the dura. We also showed that aged mice
(~2 years of age) accumulate age-associated
B cells (ABCs) and plasma cells in the dura.
Compared to naïve B cells, ABCs featured im-
portant transcriptional changes, as well as re-
duced diversity of the V-region repertoire and
accumulation of somatic mutations, thus indi-
cating antigen experience. Analysis of B cells
clones by scBCR-seq showed that dura ABCs
infiltrated from the periphery. On the basis
of BCR clonality, we also suggest that dura
ABCs may locally undergo terminal differen-
tiation into immunoglobulin (Ig)–secreting
plasma cells.

CONCLUSION: This study reveals that mouse
meninges harbor a lymphopoietic niche spe-
cific for the CNS borders. B cell development
in the meninges may induce immune tolerance
against CNS antigens, thus preserving immune
privilege within the CNS. However, blood-
derived ABCs accumulate in themeninges over
time. Peripheral ABCs are not educated by the
CNS antigens and may locally differentiate
into CNS-reactive plasma cells. This condition
may endanger the immune-privileged CNS
environment during aging.▪
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The meninges contain adaptive immune cells that provide immunosurveillance of the central nervous
system (CNS). These cells are thought to derive from the systemic circulation. Through single-cell
analyses, confocal imaging, bone marrow chimeras, and parabiosis experiments, we show that meningeal
B cells derive locally from the calvaria, which harbors a bone marrow niche for hematopoiesis. B cells
reach the meninges from the calvaria through specialized vascular connections. This calvarial–meningeal
path of B cell development may provide the CNS with a constant supply of B cells educated by CNS
antigens. Conversely, we show that a subset of antigen-experienced B cells that populate the meninges
in aging mice are blood-borne. These results identify a private source for meningeal B cells, which may
help maintain immune privilege within the CNS.

T
he central nervous system (CNS) is en-
veloped by the meninges, which harbor
different immune cell types that provide
constant surveillance at the CNS border
(1–3). Although meningeal lymphocytes

are thought to derive exclusively from the
systemic circulation, recent findings question
this premise. Vascular connections between
the calvaria (the flat bones forming the top
dome of the skull) and meninges have re-
cently been described (4–6), and two multi-
dimensional studies identified a cluster of
developmentally immature B cells in the
mouse CNS (7, 8). We hypothesized that these
B cells may derive from calvarial hematopoiesis.
Here,we show thatmeningeal B cells encompass

multiple stages of B cell development, spanning
pro-B to mature B cells. Using parabiotic mice
and bone marrow (BM) chimeras with selective
reconstitution of the skull BM, we demonstrate
that most meningeal B cells originate from the
calvaria.We envision that calvaria-derivedB cells
are locally educated by CNS-derived antigens to
prevent the generation of immunoglobulins (Igs)
with high affinity for CNS epitopes. Conversely,
a population of age-associated B cells (ABCs)
infiltrates the mouse meninges from the circu-
lation during aging. This study sheds light on
the origin and phenotypes of meningeal B cells
in homeostasis and during aging, challenging
the widely accepted idea that meningeal adapt-
ive immunity originates exclusively from sys-
temic circulation.

Results
Meningeal B cells are extravascular and
can exit the CNS compartment through the
dura lymphatics

Meninges are formed by three membranes.
The duramater is the outermost layer attached
onto the skull periosteum, whereas the two
inner layers, the arachnoid and pia mater
(leptomeninges), cover the brain cortex (Fig. 1A).
This region is enriched in different immune cell
types, and B cells represent about 30% of the
total CD45+ cells inmousemeninges (Fig. 1B and
fig. S1A). Because the dura contains a relative
abundance of immune cells and can be more
easily dissected than the leptomeninges, we
focused most of our subsequent studies on
dural B cells. By flow cytometry, B cells were
found in samples of both the dura mater and
the brain and leptomeninges (fig. S1B). The
majority of meningeal B cells in young-adult

mice were B2 type, whereas innate B cells
(B1a and B1b) represented a minor popula-
tion (fig. S1C).We surveyed B cells by confocal
imaging in the brain and spinal cord of Cd19Cre:
Rosa26tdTomato mice (hereafter CD19-Tomato),
which express the tdTomato fluorescent protein
specifically in CD19+ cells (9). Although no
B cells were found in the brain parenchyma
(fig. S1D), B cells were present in the lepto-
meninges along the brain surface (fig. S1E),
indicating that brain B cells are extraparen-
chymal. Two-photon in vivo imaging in the
subdural space of the CD19-Tomato mice
showed that most meningeal B cells were
localized in the extravascular compartment
(Fig. 1, C and D) and appeared relatively
immobile as compared to intravascular B cells
(Fig. 1, E and movie S1). The dura mater con-
tains blood and lymphatic vessels (LVs) along
the sagittal and transverse sinuses (fig. S2A).
These areas were particularly enriched in
B cells, some of which were located within
dura LVs (fig. S2B). Dura lymphatics drain
immune cells and molecules to the cervical
lymph nodes (cLNs) (10, 11), suggesting that
meningeal B cells may undergo a similar fate.
To test this hypothesis, we introduced CD19-
Tomato splenocytes into the cerebrospinal
fluid (CSF) of wild-type mice by intracisterna
magna (ICM) injection (Fig. 1F), and 24 hours
later CD19-Tomato B cells were found accu-
mulating in the cLNs (Fig. 1, G andH). Donor-
derived B cells appeared to be located in both
the dura LVs and cLN B cell zone (Fig. 1, I and
J). Thus, LVs may serve as a migratory route
for B cells exiting the CNS compartment.

Meningeal B cells are phenotypically similar to
bone marrow B cells

Although B cells represent a main immune
population in the meninges, little is known
about their composition under homeostasis.
A previous single-cell RNA sequencing (scRNA-
seq) study on mouse brain immune cells
identified two distinct B cell subsets, labeled
as “mature” and “immature” (7).We reclustered
these transcriptomic data (GSE98969) and
identified B cells based on the enrichment of
Ig transcripts (Fig. 2A). This population uni-
formly expressed pan-B cell signature genes
(Cd79b and Cd19). However,mature B cell genes
(H2-Aa andMs4a1) and early B cell genes (Rag1
and Cd93) appeared unevenly distributed in
this cluster (Fig. 2B), suggesting that B cells
in the CNS encompass different stages of
their development. Next, we compared the
phenotype of meningeal B cells to that of B
cells in the BM, blood, and spleen (Fig. 2C).
Based on the Hardy fraction (12, 13), early B
cells were identified as CD19+B220loCD43hi

(bona fide fraction B-C), late B cells as CD19+

B220loCD43lo (bona fide fraction D-E), and
mature B cells as CD19+B220hiCD43− (frac-
tion F). BM and meningeal B cells appeared
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Fig. 1. B cells
represent a
major immune
cell type in
mouse meninges
and are capable
of trafficking
through menin-
geal lymphatics.
(A) Cartoon rep-
resenting the
structural organi-
zation of the
meninges.
(B) Representa-
tive flow cytome-
try plot showing
the proportion of
B cells within the
overall CD45+

population in
mouse dura
(average of n = 4
mice, data gener-
ated from a single
experiment).
(C) Schematic
depiction of the
experimental
approach to per-
form in vivo two-
photon imaging in
the subdural
space of CD19-
Tomato mice.
(D) Representa-
tive two-photon
image of extra-
vascular B cells in
CD19-Tomato
mouse meninges
(scale bar:
50 mm). Images
on the right are
enlarged from box.
(E) Two-photon
time-lapse imaging
in the meninges
of a CD19-Tomato
mouse. Intra-
vascular B cells:
yellow arrowheads;
extravascular
B cells: white
arrowheads (scale
bar: 20 mm).
(F) Schematic
depiction of the experimental approach (ICM: intracisterna magna). (G) Flow
cytometry analysis of donor (CD19-Tomato)–derived B cells in inguinal
lymph nodes (iLNs) and cervical lymph nodes (cLNs) 24 hours after injection.
(H) Frequency and absolute number of donor-derived B cells in iLNs and
cLNs (mean ± SEM; n = 4 mice; Mann–Whitney U test, *P < 0.05; data
generated from a single experiment). (I) Confocal images of donor (CD19-

Tomato) B cells trafficking through the dura lymphatics 24 hours after injection
(representative of n = 4 mice, data generated from a single experiment) [scale
bars: 50 mm (left) and 20 mm (right)]. (J). Confocal image of donor (CD19-
Tomato)–derived B cells in cLNs 24 hours after injection (representative of n = 4
mice, data generated from a single experiment) [scale bars: 100 mm (left) and
50 mm (right)].
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Fig. 2. Mouse
meninges harbor
a heterogeneous
B cell population
that encom-
passes multiple
developmental
stages.
(A) Uniform
manifold approxi-
mation and
projection (UMAP)
of CD45+ brain
cells from a
deposited scRNA-
seq dataset
(GSE98969). Nor-
malized expres-
sion for Ighm,
Igkc, and Iglc2
was color coded
for transcript
counts. The cell
cluster highly
enriched for the
gene set was
inferred as B cells.
(B) Enrichment
for transcripts
linked to different
B cell maturation
stages. Pan-B cell:
Cd79b and Cd19;
mature B cell: H2-
Aa and Ms4a1; and
immature B cell:
Rag1 and Cd93.
(C) Flow cytome-
try analysis of
B cells from the
BM, brain, dura,
blood, and spleens
of C57BL/6 mice.
B cells were gated
as CD45+CD19+

and lineage (CD3,
CD11b, F4/80, and
Gr-1)–negative
(left column) and
were further
divided into early
(B220loCD43hi), late
(B220loCD43lo),
and mature
(B220hiCD43−)
subset (middle
column). CD93
and IgM staining is shown for the three subsets (right column). (D) Flow cytometry analysis of Rag1−/− mice. B cells derived from BM, brain, and dura were gated as
CD19+ and lineage (CD3, CD11b, F4/80, and Gr-1)–negative (left column) and were further divided into early (B220loCD43hi), late (B220loCD43lo), and mature
(B220hiCD43−) subsets (right column). (E) Quantification of B cell subsets in BM, brain and dura of C57BL/6 and Rag1−/− mice (n = 8 and 7 mice, respectively; data
generated from two independent experiments). (F) Representative confocal images of the dura mater from Rag1 GFP mice (scale bar: 100 mm). (G) Representative
confocal image of IgM+ (yellow arrowhead) and IgM− B cells (red arrowhead) in CD19-Tomato mice [scale bars: 1 mm (left) and 50 mm (right)].
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similarly distributed into these three subsets.
In both compartments, early B cells were
IgM−CD93+,matureB cellswere IgM+CD93−, and
late B cells had an intermediate phenotype.
By contrast, most blood and spleen B cells
exhibited a mature phenotype. We then re-
peated this analysis in Rag1−/− mice, which
lack mature B cells (Fig. 2D), and found a

population of B220loCD43hi B cells in the
BM, brain, and dura, whereas the blood and
spleen completely lacked B cells. Thus, the
composition of meningeal B cells closely
resembles that of the BM, both in wild-type
and Rag1−/− mice (Fig. 2E). As a validation, we
imaged the dura mater from Rag1GFP knock-in
mice (14) and found Rag1-expressing B cells,

preferentially located along the sagittal sinus
(Fig. 2F and fig. S3A). We also performed
confocal imaging of the duramater fromCD19-
Tomato mice stained for immunoglobulin M
(IgM) and found distinct subsets of IgM+ and
IgM− B cells (Fig. 2G). Immunofluorescent
imaging of CD93, Ki67, GL7 (markers of early
B cells), andCD20 (marker ofmature B cells) in
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Fig. 3. scRNA-seq analysis
reveals a similar transcriptomic
pattern in dura and BM B cells.
(A) Schematic depiction of the
experimental design related to
scRNAseq. (B) Expression of
featured genes denoting mature
and developing B cells in blood,
BM, and dura. (C) UMAP of 13,281
B cells aggregated from blood,
BM, and dura collected from three
C57BL6 mice and colored by
cluster (left) or tissue origin
(right) (data generated from a
single experiment). (D) UMAP
plots split by tissue showing the
distribution of blood, BM, and
dural B cells. (E) Proportional
contribution of the three tissues
(blood, BM, and dura) to these
10 B cell clusters. (F) Gene
expression heatmap of the top
10 signature genes per cluster.
(G) Frequency of C-region usage
per tissue determined by
scBCRseq. (H) Developmental
trajectory displayed on PCA (prin-
cipal component analysis) map
and colored by slingshot pseudo-
time. (I) Enrichment of key tran-
scripts differentially expressed
throughout B cell maturation.
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the dura mater confirmed that early B cells are
present inmousemeninges under homeostasis
(fig. S3B). Lastly, we analyzed the expression of
various markers differentially expressed across
B cell development and confirmed that BM and
meninges harbor overlapping B cell phenotypes
(fig. S4).

Single-cell analyses resolve multiple
developmental stages of dura B cells

To gain in-depth insight into the diversity of
meningeal B cells, we performed scRNA-seq
of cells isolated from dura mater, blood, and
BM. We analyzed unsorted cell suspensions to
minimize experimental artifacts due to cell
stress and to include both immune and non-
immune cells (Fig. 3A). Cells that passed the
quality control underwent unsupervised clus-
tering and were displayed on the Uniform
ManifoldApproximationandProjection (UMAP)
space (figs. S5 to S7). In the dura mater, we
resolved clusters of neutrophils (43.7%), B cells
(26.3%), T cells (3.2% double negative, 2.8%
CD8+, and 1.7%CD4+),monocytes (2.5%Ly6C+,
1.2% Ly6C−), natural killer cells (1.6%), macro-

phages (1.3%), mast cells (1.1%), plasmacytoid
dendritic cells (pDCs) (1%), classical dendritic
cells (cDCs) (0.9%), type 2 innate lymphoid
cells (ILC2) (0.4%), and plasma cells (0.3%)
(fig. S5). Dura fibroblasts (5.7%) were iden-
tified from the expression ofColl1a andMgp, as
recently reported (15). Focusing on the B cell
compartment, we found multiple B cell clus-
ters in all analyzed tissues. Indeed, all B cells in
the blood exhibited a rather homogeneous
expression of the mature markers Ms4a1 and
H2-Aa, whereas the early B cell markers Cd93,
Smarca4, Rag1, IL7r, and Mki67 were not de-
tected (Fig. 3B). The diversity in blood B cells
was mostly driven by the expression of k or l
light chains (fig. S7). By contrast, B cells in the
BM and dura exhibited a nonoverlapping en-
richment for both mature and early markers
(Fig. 3B), confirming the presence of multiple
stages of B cell development in these niches.
Next, we reclustered all B cells from the

three tissues on a single UMAP space (Fig. 3C)
and found that B cells from the BM and dura
occupied overlapping territories, whereasmost
of the blood B cells clustered separately (Fig.

3D). This analysis yielded 10 different clusters
(C0 to C9). C0 and C5 were almost entirely
(>90%) formed by blood B cells; C3, C6, C8,
and C9 contained B cells from both BM and
dura but were largely depleted of blood B cells
(<5%); C1 and C4 contained B cells from both
blood anddura butwere depleted of BMB cells
(<5%); andC2 andC7 contained B cells fromall
compartments (Fig. 3E). To determine the
identity of each cluster, we performed a dif-
ferential gene expression analysis (cluster ver-
sus total; cutoff = log2FC >0.5 where FC is fold
change) (Fig. 3F and table S1), followed by
enrichment analysis of Gene Ontology (GO)
biological process (fig. S8, A and B). From
these analyses, we determined that blood con-
tained primarily mature naïve B cells (C0, C1,
C2, C5; fraction F), a small subset of immature
B cells (C4; fraction E), and B1b cells (C7). By
contrast, BM and dura contained mature naïve
B cells (C2; fraction F), immature B cells (C6;
fraction E), pre-B cells (C3; fraction D), pro-B
cells (C9; fraction B-C), and mitotic B cells
(C8). B cell receptor sequencing (BCR-seq) an-
alysis showed that 88.1% of dura B cells with

Brioschi et al., Science 373, eabf9277 (2021) 23 July 2021 5 of 14

Fig. 4. Mass cytometry
confirms developmental
heterogeneity of dura
B cells. (A) Schematic
depiction of the experimen-
tal design related to cytom-
etry by time of flight
(CyTOF) analysis.
(B) Unsupervised clustering
by means of t-distributed
stochastic neighbor embed-
ding (t-SNE) of 6000 live
singlet CD45+CD19+ B cells
obtained from concatena-
tion of three tissues (blood,
BM, and dura) collected
from three C57BL6 mice
(data generated from a
single experiment). Cells
are displayed by pseudo-
color (left) and contour
plots (right). (C) Heatmap
showing the surface protein
expression of selected B
cell markers among the six
B cell clusters (cluster 7
was arbitrarily excluded
because of low cell num-
ber). (D) Staining enrich-
ment of representative
surface markers for mature
and developing B cells.
(E) Merged t-SNE plot colored
by cluster (left) and t-SNE
plot split by tissue (middle).
Frequency of each cluster in
blood, BM, and dura (right).
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productive V(D)J rearrangement were IgM
type, again confirming their early stage of
development (Fig. 3G). Finally, we performed
pseudotime analysis (Fig. 3H) and identified a
developmental trajectory that originated from
mitotic B cells, then traversed pro-B and pre-B
intermediate stages, before eventually giving
rise to mature B cells (Fig. 3I). To empirically
test this model, we performed bromo-deoxy-
uridine (BrdU) pulse-chase experiments focus-
ing on BM and dura B cells (fig. S8C). At
24 hours post-BrdU pulse, early B cells exhi-
bited the maximal incorporation of BrdU. At
3 days, the percentage of BrdU+ early B cells
was sharply reduced, but it increased in both
late and mature B cell populations. At 5 days,
almost no BrdU+ B cells could be detected,
presumably because BrdU-labeled cells under-
went apoptosis, further differentiated, or were
progressively diluted by newly generated B cells.
Thus, the molecular signature of dura B cells
highlights a stepwisedevelopmental continuum,
comprehensive of multiple intermediate pheno-
types that are normally found in the BMbut not
in the periphery.
To validate the scRNA-seq data, we per-

formed amass cytometry study of dura, blood,
and BM B cells (Fig. 4A and fig. S9). Unsuper-
vised clustering of the CD45+CD19+ popula-

tion using t-distributed stochastic neighbor
embedding (t-SNE) identified seven distinct
clusters (C1 to C7) (Fig. 4B and table S2). We
analyzed clusters C1 to C6 in detail (Fig. 4, C
and D), whereas C7 was excluded from fur-
ther analysis because it contained only 17 cells.
C1 and C4 exhibited a typical mature phenotype
(MHC-II+IgM+IgD+) but differentially expressed
k or l light chains. C2 and C5 had an immature
B cell phenotype (IgDloCD22loCD21loCD23loCD24+),
whereas k or l light chains were differentially
expressed. C3 had an early B cell phenotype
(IgD−CD21−CD23−IgMloCD24+CD43+IL7R+CD93+).
C6 was negative or low for both naïve B cell
markers and pre-B markers but expressed
CD43, CD44, CD73, and PD-L1, indicating an
activated phenotype (16). Next, we determined
the distribution of B cells from each compart-
ment among the six clusters (Fig. 4E). Blood
B cells were maximally enriched in C1 (88.6%),
BM B cells were distributed among all clusters
(C1= 49.6%, C2 = 13%, C3 = 30.7%), and dura
B cells were primarily concentrated in C2
(44.3%), with substantial fractions in C1 (18.8%)
and C3 (22.6%). Blood and BM were equally
represented in C4 (5.4 and 4.1%, respectively),
whereas the dura was more abundant than
either blood or BM in C5 (6.9% versus 1.3 and
1.9%). Thus, mass cytometry analysis confirms

that the duramater contains a large proportion
of developing B cells.

Meningeal B cells mostly originate from
the calvaria

Because only a few immature B cells were
present in the blood, it was unlikely that
developing B cells in the dura originated
from the systemic circulation. We hypothe-
sized that dura B cells originated in the
calvarial BM. Indeed, the caudal region of
the skull harbored a large hematopoietic
niche (fig. S10, A and B), containing a variety
of immune cells, including IL7R+ early B cells
and LSK stem cells (fig. S10C). Electron
microscopy (EM) and confocal imaging high-
lighted a complex cellular system in this area,
containing both myeloid and lymphoid cells
(fig. S10, D and E). To test our hypothesis, we
performed an atypical BM transplantation
experiment. During irradiation, the mouse
bodywas protectedwith a lead shield, leaving
only the head fully exposed (Fig. 5A). Head-
irradiated Cd45.2 mice received Cd45.1 BM
cells and 4 weeks later, the percentage of B cell
chimerism was assessed in different tissues
(Fig. 5, B and C). In both tibial BM and
peripheral blood, only a negligible percentage
of donor-derived B cells was found (6 and
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12.1% respectively), whereas a large popula-
tion of donor-derived B cells was present in
skull BM and dura (29 and 24.9%, respec-
tively). By contrast, almost no donor-derived
CD4+ T cells were found in these compart-
ments. We performed the reverse experiment,
using a Cd45.1 host, transplanted with Cd45.2
BM cells and obtained comparable results
(fig. S11A). To determine whether circulating
B cells may potentially contribute to the pool
of meningeal B cells under homeostasis, we
performed a parabiosis experiment using wild-
type and CD19-Tomato mice. After 4 weeks of
shared circulation, the percentage of tdTomato-
positive B cells was assessed inwild-typemice. A
large population of parabiont-derived B cells

was present in the blood and spleen (39.2 and
36.4%, respectively), whereas a minor infiltra-
tion could be found in brain and dura (11.3 and
8.0%, respectively) (fig. S11, B and C). Compara-
ble results were obtained by adoptive transfer
of CD19-Tomato splenocytes into wild-type
recipient mice (fig. S11, D and E). Thus, most
meningeal B cells appear to originate in the
calvarial BM and not from the circulation.
It has been recently shown that vascular

channels form a direct communication be-
tween the calvaria and the meningeal space,
thus allowing migration of immune cells in-
dependently of the systemic circulation (4, 6).
We performed confocal imaging of skull cryo-
sections after immunofluorescent staining for

endothelial markers (tomato lectin, CD34, and
CD31). B cells were visualized by means of the
CD19-Tomato reporter. In agreement with these
studies, we found vascular channels through the
inner skull bone (fig. S12A). As a complementary
technique, we performed x-ray tomography on
intact skull specimens impregnated with radio-
paque metals. The resulting three-dimensional
(3D) image displayed in z series reveals the
presence of radiolucent areas (seemingly ves-
sels) running through the calvaria and opening
at the base of the sagittal sinus (fig. S12b and
movie S2). Finally, we provide evidence of IgM−

B cells trafficking through these channels, con-
firming that calvaria-derived B cells reach the
meningeal compartment at an early stage of
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their development (Fig. 3D and fig. S12, C
and D).

Dural fibroblasts produce crucial factors for
B cell development

Notably, one of the top signature genes of
fibroblast-like cells (FLCs) in the dura was
Cxcl12 (17), whereas dural early B cells ex-
pressed Cxcr4 (Fig. 6A). NicheNet analysis
highlighted a network of molecular commu-
nications between FLC and dura B cells.
Among the several ligands detected in dural
fibroblasts, Cxcl12, April, Tgfb2, and Apoe
were assigned a high probability score (Fig.
6B). Cxcl12 expression in dural FLCs was con-
firmed by imaging and flow cytometry using
Cxcl12DsRed reporter mice (Fig. 6, C and D).
Surface expression of CXCR4 in early B cells
was also confirmed by flow cytometry (Fig. 6E).
The majority of early B cells in the dura had
CXCR4 expressed on the cell surface (Fig. 6F),
suggesting that calvaria-derived B cells may
require this receptor for their homing to the
meningeal compartment. Finally, confocal
imaging demonstrated B cells in close contact
to Cxcl12-expressing FLCs in the sagittal sinus
(fig. S13). As the CXCL12–CXCR4 axis is crucial
for B cell development, we propose that dural
FLCs may support the survival and differen-
tiation of early B cells derived from the
calvarial BM.

ABCs and plasma cells accumulate in mouse
meninges during aging

Lymphocytes exhibit clonal and phenotypical
imbalance during aging (18, 19). Indeed, we
found a marked increase in the total number
of B cells in the dura of aged mice (fig. S14, A
and B). We then investigated the impact of
aging on meningeal B cells by comparing
young (8- to 12-week-old) and aged (20- to
25-month-old) mice by scRNA-seq and scBCR-
seq (Fig. 7A). An accumulation of clonal B cells
was found in the aged dura (fig. S14C), as well
as an increased clonal overlap with blood B
cells (fig. S14D), suggesting infiltration from
the periphery. All B cell clusters in the dura
were equally represented in young and aged
mice, except for one cluster that was almost
entirely (96.1%) derived from agedmice (Fig. 7,
B and C) and was therefore annotated as “age-
associated B cells” (ABCs). Differential gene
expression analysis between ABCs andmature
B cells (log2FC >0.5; adjusted P < 0.01) re-
vealed 105 differentially expressed genes (table
S3). The top up-regulated transcripts included
Apoe, Ly6a, Ighm, Igkc, Cd2, Lgals1, Zbtb20,
and Syk, whereas the top down-regulated
transcripts contained Fcer2a, Cr2, Cd55, Sell,
and Ebf1 (Fig. 7, D and E). Using flow cytom-
etry, we confirmed a significant expansion of
B220hiCD23−CD2+Sca1+ ABCs in the dura of
aged mice (Fig. 7, F and G). Consistent with
the scRNA-seq data, this cell population also

expressed increased amounts of Syk and
ApoE protein (Fig. 7H and fig. S14E).
Furthermore, dura ABCs had increased num-
bers of Ighm heavy-chain transcripts com-
pared to mature B cells (Fig. 7I). scBCR-seq
further confirmed increased Ighm, and reduced
Ighd, C-region usage in ABCs (Fig. 7J). Addi-
tionally, ABCs exhibited greater similarity in
their V gene usage profiles (fig. S14F), as well
as accumulation of somatic mutations in the
BCRs of cells expressing the Ighm heavy
chain (fig. S14G). Thus, dural ABCs are antigen-
experienced B cells. Using these BCR data, we
determined the percentage of B cells in clones
that were shared between dura and blood
(Fig. 8A). We found that dural B cells had no
clonal overlap with circulating B cells in
young mice, whereas a minor overlap could
be observed in aged mice. By contrast, many
dural ABCs were members of clones shared
with the blood (30.8%), suggesting that these
cells had trafficked from the periphery.
Next, we focused on dural plasma cells (fig.

S15, A and B), which also appeared expanded
in the aged dura (Fig. 7C). Differential gene
expression analysis revealed that the expression
of Ig isotypes wasmarkedly shifted between the
two age groups. In young mice, dural plasma
cells were predominantly IgA+ but became
mostly IgM+ in aged mice (fig. S15C). By con-
focal imaging, we surveyed plasma cells
located along the sagittal sinus (fig. S15D)
and confirmed the massive increase in the
number of these cells in agedmice (fig. S15E),
especially IgG and IgM types, whereas the
number of IgA plasma cells was unchanged
(fig. S14F). Lastly, we assessed the redundancy
of plasma cell clones detected by scBCR-seq to
gain insight into their origin (Fig. 8B). Al-
though only a few plasma cell clones could be
detected in the dura mater of young mice, we
found an important clonal overlap with blood,
indicating that plasma cells (mostly IgA) from
young mice infiltrate the dura from the pe-
riphery, as recently demonstrated (20). By con-
trast, plasma cell clones in the aged dura
(mostly IgM) exhibited a negligible overlap
with the blood repertoire, indicating that
most of these cells were not derived from the
blood. Notably, we found a clonal overlap
(15.4%) between dural plasma cells and dural
ABCs, suggesting that, in aged mice, some
dural ABCs may locally undergo terminal dif-
ferentiation into IgM-secreting plasma cells.
The top 10 most expanded clones detected in
the aged dura specifically mapped onto both
ABC and plasma cell clusters (Fig. 8C), sup-
porting the possibility of a clonal relatedness
between these two populations.

Discussion

Recent studies have shed light on the origin
and phenotypic diversity of the myeloid cell
landscape at the CNS borders (8, 21–24). Yet,

little is known about B cells resident at CNS
interfaces. Using complementary techniques,
we demonstrated that meningeal B cells en-
compass multiple stages of the development.
These B cells originate in the calvaria and
infiltrate the meninges through a network of
channels uncoupled from the systemic circu-
lation. Early B cells may complete their matu-
ration within the meningeal compartment,
wherein dura fibroblasts can provide critical
molecules for B cell development, such as
CXCL12 (25, 26). Using Nur77GFP mice, in
which green fluorescent protein (GFP) ex-
pression reflects BCR engagement by self-
antigens (27), we showed that transitional
and mature meningeal B cells are equipped
with a functional BCR, evinced by GFP ex-
pression in these populations (fig. S16, A to
C). Thus, the calvaria may provide an early
and rapid source of B cells that develop in
the dura, resulting in negative selection of
B cells with high affinity for local self-epitopes.
In support of this hypothesis, transgenic mice
carrying the IgH chain of the mAb 8.18C5
specific for myelin oligodendrocyte glyco-
protein (MOG) (28) showed a significant
reduction of MOG-specific B cells in dura
compared to tibial BM, suggesting that neg-
ative selection may occur locally (fig. S16, D
to F). The calvaria was recently described as
a source of meningeal neutrophils (4), and a
companion paper shows that calvarial BM
supplies the CNS with myeloid cells, both
under homeostasis and inflammation (29).
We further integrate these findings show-
ing that meningeal B cells share a similar
origin.
In aged mice, we identified a distinct pop-

ulation of meningeal B cells corresponding to
ABCs (30), which have been mostly found in
the spleen (19, 31–33), but never in the CNS.
scBCR-seq indicates that dural ABCs are
antigen-experienced B cells infiltrated from
the systemic circulation. Additionally, the aged
dura mater features a robust expansion of
IgM+ and, to a lesser extent, IgG+ plasma cells.
By contrast, meningeal IgA+ plasma cells,
which derive from the gut (20, 34), appeared
unaffected by aging. The infiltration of blood-
borne ABCs, as well as the accumulation of
plasma cells within the meninges, may en-
danger the immune-privileged CNS environ-
ment during aging. Because B cells are key
players in neuroinflammatory and autoimmune
disorders (35,36), these findingsmayhelp better
explain the origin of self-reactive B cells in these
pathologic conditions.

Materials and methods
Animals

All mice used in this study were C57BL/6J
housed under specific pathogen-free conditions
at Washington University School of Medicine
animal facility. Homozygous Cd19Cre mice were
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purchased from the Jackson Laboratory (JAX
stock #006785) and mated with homozygous
Rosa26-STOPtdTomato (Ai14) mice bred in house.
Heterozygous Cxcl12DsRed mice were purchased
from the Jackson Laboratory (JAX stock
#022458) and mated with C57BL/6J mice
bred in house. Nur77GFP mice were provided

by Dr. P. Allen (Department of Pathology and
Immunology, Washington University School
of Medicine). IGHMOG mice were provided by
Dr. G.F. Wu (Department of Neurology,
Washington University in Saint Louis). All
experiments involving laboratory animals
were performed under the approval of the

Institutional Animal Care and Use Commit-
tee at Washington University in St. Louis
(protocol #19-0981). For flow cytometry and
imaging experiments, both sexes were used
and equally distributed among the experi-
mental groups. For CyTOF, scRNAseq, and
parabiosis experiments, females only were
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Fig. 7. Age-associated B cells disseminate throughout the dura of aged
mice. (A) Schematic depiction of the experimental design of scRNAseq
comparing young and aged mice. UMAP of 9352 B cells aggregated from seven
12-week-old and seven 25-month-old C57BL6 female mice (data generated
from two independent experiments). (B) Distribution of B cells from young and
aged mice. (C) Contribution of young versus aged mice to each cluster.
(D) Differential gene expression analysis of ABCs versus mature B cells.
(E) Violin plots showing top up-regulated genes in ABCs compared to mature
B cells. (F) Dura ABCs gated as the B220hiCD23−CD2+Sca1+ cells. (G) ABC

population is significantly increased in the dura of aged mice compared to young
mice (mean ± SEM; n = 5 mice; unpaired Student’s t test, **P < 0.01; data
generated from two independent experiments). (H) Flow cytometry histogram
showing increased amounts of Syk protein in dura ABCs (representative of three
18-month-old female mice; data generated from a single experiment). (I) Ig
heavy-chain transcript counts per cell in ABCs and mature B cells. (J) Frequency
of heavy-chain usage determined by BCRseq in ABCs and mature B cells
(violin plot; n = 11 to 14 mice per group; two-way ANOVA and Bonferroni post-hoc
test ***P < 0.001).
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used to minimize biological variability. For
studies on young-adult mice, 8- to 12-week-
oldmice were used. For studies on agedmice,
20-25-month-old mice were used. On the day
of sacrifice, mice received a lethal dose of
ketamine–xylazine injected intraperitoneally
(i.p.) (respectively, 300 mg and 30 mg per
kilogram of body weight). After complete loss
of the paw-pinch reflex, blood samples were
collected by heart puncture. All other tissues
analyzed in this study (dura, brain, spleen,
and bone marrow) were collected upon per-
fusion with 30 ml of ice-cold phosphate-
buffered saline (PBS). Parabiotic mice were
prepared by the surgery core in the Hope
Center for Neurological Disorders (Washing-
ton University, St. Louis, MO) as previously
described (37).

Intravenous injection of CD19-Tomato
splenocytes

Five-month-old CD19-Tomato mice were sac-
rificed with CO2 and spleens were immedi-
ately collected into ice-cold PBS. Splenocytes
were mechanically extracted by mashing the
spleen on a 70-mm strainer and collected in a
50-ml conical centrifuge tube. Samples were
pelleted by centrifugation at 300g for 15 min
at 4°C, followed by red blood cells lysis on ice
for 2 min. Splenocytes were then washed in
sterile PBS, pelleted by centrifugation at 300g
for 5 min at 4°C, and resuspended in 1 ml of
sterile PBS. Before counting, cells were filtered

through a 35-mm sterile strainer. Three-month-
old gender-matched C57BL6micewere used as
recipients. Mice were anesthetized with a dose
of 80mg per kilogram ketamine and 10mg per
kilogram xylazine administered by i.p. injection.
After complete loss of the paw-pinch reflex, mice
received a retro-orbital injection of 2 × 107 freshly
prepared splenocytes from CD19-Tomato mice.
Recipientmicewere sacrificed onweek later and
blood, spleen, brain, and dura were analyzed by
flow cytometry.

Intra cisterna magna injection of CD19-Tomato
splenocytes

A single CD19-Tomato mouse was perfused
under sterile conditions and spleen was im-
mediately collected into ice-cold PBS. Spleno-
cytes were mechanically extracted by mashing
the spleen on a 70-mmstrainer and collected in
a 50-ml conical centrifuge tube. Samples were
pelleted by centrifugation at 300g for 15min at
4°C, followed by red blood cell lysis on ice for
2 min. Splenocytes were then washed, and
resuspended in sterile PBS at a final concen-
tration of 5 × 105 cells/ml. Injection of 2.5 × 106

CD19-Tomato splenocytes (5 ml) in the cisterna
magna of 3-month-old gender-matched C57BL6
mice was performed as previously described
(10). After injection, mice were sutured and
monitored until they completely recovered.
The dura mater, cervical lymph nodes, and
inguinal lymph nodes were collected 24 hours
after injection.

Sample preparation for flow cytometry
or scRNAseq
Blood samples underwent red blood cell lysis
at room temperature for 5 min. Hereafter,
sample preparation was entirely carried out
either on ice or at 4°C. No enzymatic digestion
was used in this study. The dura mater was
stripped off the inner skull surface using pre-
cision tweezers. Single-cell suspensions of
brain, dura, and calvarial bone marrow were
generated via mechanical dissociation using a
dounce homogenizer. Cells were then filtered
through a 70-mm strainer and collected in a
50-ml conical centrifugation tube. Splenocytes
were mechanically extracted by mashing the
spleen on a 70-mm strainer and collected in a
50-ml conical centrifuge tube. Tibial bone
marrowwas extracted from open tibias into a
1.5-ml microcentrifuge tube by centrifugation
at top-speed for 20 s using a bench centrifuge.
Spleen and bone marrow samples underwent
red blood cells lysis on ice for 2 min. Samples
were pelleted by centrifugation at 300g for
15 min at 4°C. Dura pellets were resus-
pended in 5 ml of 75% isotonic percoll,
overlaid with 3 ml of PBS. Stromal cells
and debris were depleted by centrifugation
at 1000g for 30 min at 4°C (acceleration 0,
break 1). The interface percoll-PBS was col-
lected for analysis. Brain pellets were re-
suspended in 5 ml of 30% isotonic percoll,
overlaid with 2 ml of PBS. Myelin was de-
pleted by centrifugation at 1000g for 30 min
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at 4°C (acceleration 0, break 1). The pellet was
collected for analysis.

Flow cytometry analysis

Single-cell suspensions were washed in PBS
followed by live/dead staining (Zombie Aqua
or Zombie UV, Biolegend) at 1:1000 dilution
for 15 min on ice. Fc-receptor blockade was
performed using CD16/32 blocking antibody
(clone 93, Biolegend; or clone 197, made in
house) incubated 10 min on ice. Surface stain-
ing was always performed between 30 min
and 1 hour on ice (complete antibody list in
table S4). For staining of intracellularmarkers,
fixation and permeabilization were performed
using either the BD Cytofix/Cytoperm kit (BD
Bioscience), or the Foxp3/Transcription Factor
Staining kit (eBioscience), according to the
product instructions. For ApoE intracellular
staining, 1 mg/ml of purified anti-ApoE (clone
HJ6.3, kindly provided by David Holtzman)
was conjugated with AlexaFluor647 and fixed/
permeabilized cells were stained overnight
(1:100 dilution) at 4°C. For staining of IGHMOG

BCR, B cells were incubated with 2 mg/ml of
biotin-conjugated recombinant MOG (1:100
dilution) for 30 min on ice prior to surface
markers staining. Flow cytometry analysis
was performed on BD X20, BD LSR Fortessa,
or BD Canto-II (BD Bioscience). Raw data
were analyzed with FlowJo v10.

Skull bone marrow transplantation

Twelve-week-old C57BL/6J (Cd45.2) mice
were anesthetized with a dose of 80 mg per
kilogram ketamine and 10 mg per kilogram
xylazine administered by i.p. injection.
Mice were inserted into a 1-inch-thick lead
shield (1 inch-thick Lead Vial Shield, 50 ml,
Pinestar Technology) leaving only the head
exposed. Each mouse received 11 Gy of gamma
irradiation, split into two doses 4 hours apart.
Immediately after the second dose, mice were
reconstitutedwith 2 × 106 Cd45.1 bonemarrow
cells injected intravenously (i.v.) Mice were left
undisturbed in their home cage for the fol-
lowing 4 weeks. On the day of experiment,
samples were processed as described above.
The percentage of chimerismwithin different
immune populations was determined by stain-
ing for CD45.2 and CD45.1.

Immunofluorescence staining

Brains, spinal cords, and skull caps were fixed
in 4% paraformaldehyde (PFA) at 4°C over-
night. Fixed specimens were then dehydrated
in 30% sucrose solution for at least 48 hours
and then cut into 60- to 100-mm-thick sec-
tions at the cryostat (Leica). Staining on free-
floating sections was performed. Cryosections
were blocked for 4 hours in PBS with 5%
bovine serum albumin (BSA) and 0.5% Triton
X-100. Primary antibody staining was per-
formed in PBS with 1% BSA and 0.5% Triton

X-100 for 48 hours at 4°C. Secondary staining
with fluorochrome-conjugated antibodies was
performed at room temperature for 2 hours
(complete antibody list in table S4). Immuno-
stained sections were mounted on Superfrost
glass slides (Fisher Scientific) and embedded
in Prolong Glass anti-fade mounting media
(Thermofisher). Lymph nodes were fixed and
dehydrated as above and sliced into 20 mm-
thick sections at the cryostat. Sections were
directly mounted on the Superfrost glass
slides and air dried. Blocking was performed
for 1 hour (5% BSA, 0.5% Triton X-100), and
antibody staining for 24 hours at 4°C (1%
BSA, 0.5% Triton X-100). For whole-mount
preparation of dura mater, skull caps were
fixed as above, and then decalcified in 0.5 M
pH 8.0 EDTA solution (Corning) for 48 hours
at 4°C. Blocking and staining were performed
as above. The whole skull was mounted on
Superfrost glass slides and embedded in
Fluoromount-G anti-fade mounting media
(Southern Biotech). Stained samples (both
cryosections and whole mount preparations)
were covered with 1.5H high-precision cover
glass (Marienfeld Superior) and left to dry
overnight at room temperature before imaging.

Confocal imaging

Confocal imaging of duramater wholemounts
preparations and brain cryosections was per-
formed using a Zeiss LSM880 airyscan in-
verted confocal microscope equipped with a
34-channel GaAsp (gallium arsenide phos-
phide) detector. Cryosections were imaged
with a 40×/1.4 oil-immersion objective. Dura
whole mounts were imaged with a 40×/1.2
water-immersion objective. Images were acquired
at 2048 × 2048-pixel resolution, 20- to 50-mm-
thick z-stack z-step = 1mm, line averaging = 2,
using ZEN Black (ZEISS Efficient Navigation)
software (Zeiss). When needed, tile-scanmode
was used to generate large filed-of-view im-
ages. Confocal imaging of leptomeninges was
performed on fresh unfixed brains from young
adult CD19Cre:Rosa26tdTomato mice. Briefly,
mice were anesthetized with a lethal dose
of ketamine and xylazine administered by
i.p. injection. After complete loss of the paw-
pinch reflex, blood vessels were fluorescently
labeled by retro-orbital injection of 100 ml of
DyLight 488-labeled tomato lectin (Vector
Laboratories, 1:1 dilution). Twominutes later,
the mouse was decapitated, and the brain
was immediately rinsed in ice-cold PBS and
imaged using a Leica SP8 inverted confocal
microscope. Images were acquired with a
25×/0.95 water-immersion objective, at 2048 ×
2048- or 4096 × 4096-pixel resolution, 70 mm-
thick z-stack, z-step = 5mm, line and frame
average=3, using Leica Application Suite, LASX
(Leica Microsystems). Maximal projections were
rendered in Imaris V8.3 (Bitplane, Zurich,
Switzerland).

Two-photon imaging
Young adult CD19Cre:Rosa26 tdTomato mice
were anesthetized with a dose of 80 mg per
kilogram ketamine and 10 mg per kilogram
xylazine administered by i.p. injection. After
complete loss of the paw-pinch reflex, fur on
the head and neck was shaved and the skin on
the parietal skull bonewas surgically removed.
Skull bone was thinned using an electrical
micro drill and the head was fixed on a metal
holder tominimizemovements during the live
imaging. Immediately before imaging, blood
vessels were fluorescently labeled by retro-
orbital injection of 100 ml of DyLight 488-
labeled tomato lectin (Vector Laboratories,
1:1 dilution). Time-lapse in vivo imaging was
performed with a Leica SP8 2-photon imag-
ing system. DyLight-488 and tdTomato were
excited with Mai Tai Deepsee and Insight
Deepsee lasers (Specta Physics, Santa Clara
Ca, USA) optimally tuned to 920 nm and
1050 nm respectively. Emission spectra were
collected on ultrasensitive hybrid detectors
as follows: >560 nm (tdTomato), 495-560 nm
(DyLight 488), and <458 nm (second harmonic).
The subdural space was identified using the
second harmonic generation and the blood
vessels as territory landmarks. Time-lapse im-
aging was performed with a 25×/0.95 water-
immersion objective, at 1024 × 1024-pixel
resolution, z-stacks = 40 mm, z-step = 2.5 mm,
acquisition speed = 4 frames per min, im-
aging time = 30 min, using Leica Application
Suite, LAS X (Leica Microsystems). Maximal
projection and video editing were performed
with Imaris V8.3 (Bitplane, Zurich, Switzerland).

Mass cytometry (CyTOF) analysis

Single-cell suspension from dura mater, tibial
bone marrow and blood were obtained as
described above. Cells were resuspended in
Cy-FACS buffer (PBS, Rockland; 0.1% BSA,
Sigma A3059; 0.02% NaN3; 2mM EDTA). Fc-
receptor blockade was performed using CD16/
32 blocking antibody (clone 93, Biolegend,
1:100). Cell were stained for 1 hours on ice with
the surface staining cocktail (complete anti-
body list in table S4). Viability staining was
performed by resuspending cells in 2.5 mM
Cisplatin for 1 min. Cells were then fixed
with 4% PFA for 30 min on ice followed by
overnight DNA staining with iridium-labeled
intercalator (1:3000). Cells were acquired with
the CyTOF2mass cytometry system (Fluidigm)
and analyzed using Cytobank. Immune cells
were hierarchically gated as follows: nucleated
cells, exclusion EQ calibration beads, live cells,
single cells, and CD45+. Dimensionality reduc-
tion analysis was performed on CD45+ cells
using the viSNE toolX in Cytobank to apply the
Barnes-Hut implementation of the t-SNE
algorithm. Unsupervised clustering of the
total CD45+ cells was performed using the
following parameters: iterations = 2000;
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perplexity =100; Theta = 0.5. This setup has
been chosen as it demonstrated to produce
the best separation of biologically mean-
ingful populations in the three compart-
ments. Next, the CD45+CD19+ population
from the blood, BM, and dura were further
analyzed with FlowJo v10. B cells populations
from independent replicates were aggregated
and down-sampled to 2000 single/live B cells
per compartment. Finally, downsampled files
were concatenated and reclustered by t-SNE
algorithm using default settings (iterations =
1000; perplexity = 20; Theta = 0.5).

BrdU staining for cell proliferation

Mice received two i.p. injections 6 hours apart
of 5 mg BrdU (Sigma) dissolved in PBS. Mice
were randomized and sacrificed at multiple
time points after injection (24 hours, 3 days,
5 days, and 7 days). Samples were prepared
as described above, followed by BrdU staining
using the BrdU flow Kit (BD Pharmingen).
Briefly, after surface staining, cells were fixed
with fix/perm BD buffer for 20 min on ice,
followed by 10 min nuclear permeabilization
with BD perm-plus buffer, and a second fixa-
tion for 5 min at room temperature. Fixed/
permeabilized cells were incubatedwith deoxy-
ribonuclease I (DNase I) (300mg/ml) for 1 hours
at 37°C, followed by intranuclear BrdU stain-
ing (Biolegend clone 3D4, 5 ml BrdU-PE per
sample) for 30 min at room temperature.
Flow cytometry analysis was performed on
BD LSR Fortessa.

Transmission electron microscopy

After perfusion with ice-cold PBS, skull caps
were removed and fixed with 4% para-
formaldehyde (PFA), 0.1% glutaraldehyde
(Polysciences Inc.,Warrington, PA) in phosphate-
buffer 0.1 M, pH 7.2 overnight at 4°C. Samples
were decalcified in 0.5 M pH 8.0 EDTA solution
(Corning) for 48 hours at 4°C and fixed again in
2%PFA, 2.5% glutaraldehyde in 100mMsodium
cacodylate buffer, pH 7.2 for 2 hours at room
temperature. Samples were washed in sodium
cacodylate buffer at room temperature and
postfixed in 2% osmium tetroxide (Polysciences
Inc.) for 2 hours at room temperature. Samples
were then rinsed extensively in dH20 prior to
en bloc staining with 1% aqueous uranyl
acetate (Ted Pella Inc., Redding, CA) for 1 hour
at room temperature. After several rinses in
dH20, samples were dehydrated in a graded
series of ethanol and embedded in Eponate 12
resin (Ted Pella Inc.). Thick sections of 400 nm
werecutwithaLeicaUltracutUCTultramicrotome
(Leica Microsystems Inc., Bannockburn, IL)
and stained with 1% toluidine blue, 2% sodium
borate. Brightfield images were acquired on a
Zeiss AxioObserver D1 inverted microscope
(Carl Zeiss Inc. Thrownwood, NY) equipped
with an Axiocam 503 color camera. Areas of
interest were identified, and images were

acquired with 20×/0.5 and 40×/1.2 objec-
tives. Ultrathin sections of 95 nm from the
areas of interest were then collected on Cu
grids, stained with uranyl acetate and lead
citrate, and viewed on a JEOL 1200 EX trans-
mission electron microscope (JEOL USA Inc.,
Peabody, MA) equipped with an AMT 8-
megapixel digital camera and AMT Image
Capture Engine V602 software (Advanced
Microscopy Techniques, Woburn, MA).

X-ray tomography

Upon perfusion, mouse cranium was fixed in
4% PFA overnight at 4°C and stained with
10% Lugols iodine solution (38) at 21°C for
5 days prior to imaging. Following incuba-
tion, samples were embedded in 2% agarose,
and imaged using a Zeiss Versa 520 (Carl
Zeiss Microscopy, White Plains, NY) using
either a 0.4× flat panel detector or a 4× ob-
jective at 80 kV. Final tomograms were visual-
ized, and resultant images were generated in
Zeiss XM3DViewer v.1.2.9. Z-projections were
generated in ImageJ.

Single-cell RNA sequencing and single-cell BCR
sequencing library preparation

For scRNAseq seven 10-week-old and seven
25-month-old female mice were used. Single-
cell suspension from dura mater, tibial bone
marrow and blood were obtained as described
above. No sorting or enrichment was used as
this experiment aimed to achieve a compre-
hensive transcriptomic representation of both
immune and stromal cells. Samples were re-
suspended into low binding microcentrifuge
tubes with PBS + 0.04% BSA at a final con-
centration of ~1000 cells/ml. Single cells gene-
expression and V(D)J libraries were prepared
by the McDonnell Genome Institute (MGI) at
Washington University using the 5′ Single Cell
with V(D)J Enrichment Reagents Kit from 10x
Genomics. Using the 10x Chromium VDJ + 5′
Gene expression v.1 platform, up to 17,500 cells
were partitioned into nanoliter Gel-bead-in-
Emulsions (GEMs) droplets. Each GEM under-
went retro-transcriptase reaction to generate
single-cell cDNA and received a unique 12-nt
cell barcode and unique molecular identifier
(UMI). GEM cDNA was amplified for 11 cycles
before being purified using SPRIselect beads.
For scRNAseq, 10 ml of purified cDNAwas used
to generate the library for RNA sequencing.
Libraries were sequenced on a NovaSeq S4
(Illumina, 300 cycle kit) flow cell, targeting
50K read pairs per cell. For scBCRseq, 2 ml of
purified cDNA was used to generate the se-
quencing of the V(D)J region. Sequencing was
performed using a NovaSeq S4 (Illumina, 300
cycle kit) flowcell, targeting5K readpairs per cell.

Single-cell RNAseq analysis

Cell Ranger Software Suite (v3.1.0) from 10X
Genomics was used for sample demultiplex-

ing, barcode processing, and single-cell count-
ing. Cell Ranger count was used to align
samples to the reference genome GRCm38
(mm10), quantify reads, and filter reads and
barcodes. Contamination by ambient RNA in
droplets was normalized using SoupX (v1.4.5)
(https://github.com/constantAmateur/SoupX).
Furthermore, contaminating genes from eryth-
rocytes and platelets (Clu, Gng11, Gp1bb, Gp9,
Hba-a1, Hba-a2, Hbb-b1, Hbb-b2, Nrgn, Pf4,
Ppbp, and Tubb1) were filtered out from the
dataset. The Seurat (v3.2.2) package in R was
used for downstream analysis. For quality
control, cells with mitochondrial content >20%
were removed. Cells with low UMI and gene
number per cell were filtered out. Cutoffs for
UMI and gene number were determined on
the basis of histograms showing cell density as
a function of UMI per gene counts. For dura
and bone marrow samples, cutoffs of >500
UMI and >250 genes were applied. For blood
samples, cutoffs of >500 UMI and >1000 genes
were applied. Genes expressed in fewer than
10 cells were removed from the dataset.
Samples from different tissues were clus-

tered separately. For each tissue, data were
normalized using the SCTransform method
regressed on mitochondrial gene percentage
and integrated using FindIntegrationAnchors
function and Canonical Correlation Analysis
(CCA) (39, 40). Principal component analysis
was performed, and the top 40 principal com-
ponents were selected for dimensionality
reduction using the Uniform Manifold Ap-
proximation and Projection (UMAP) algorithm.
For identification of marker genes and differ-
ential expression analysis, we used the MAST
algorithm implemented through the Seurat
R package (41).Marker geneswere identified by
comparing each cluster against all other clusters
using the FindConservedMarkers function with
default settings (log-fold change threshold of
0.25 and >10% cells expressing the gene) and
age as the grouping variable. Cell clusters from
each tissue were annotated based on marker
gene expression and clusters consisting of
doublets were manually removed. For further
analyses of B cell heterogeneity, B cell clusters
were extracted and re-clustered. For reclus-
tering analyses, data were normalized using a
scaling factor of 10,000 and mitochondrial
read percentage was regressed with a nega-
tive binomial model. Principal component
analysis was performed using the top 2000
most variable genes and UMAP analysis was
performed using the top 10 principle compo-
nents. Clusteringwas performed using a reso-
lution of 0.4. For data visualization and figure
preparation of scRNA-seq data BBrowser
version 2.7.5 was used (42).
Single-cell pseudotime trajectories were in-

ferred using diffusion map algorithms imple-
mented through the R package destiny (43).
Normalized expression values were used as
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input for the generation of diffusion maps.
Cells were ordered based on the first diffu-
sion component. To further visualize B line-
age differentiation, pseudotime was inferred
using the slingshot R package (44). Gene
Ontology analysis for biological processes
enriched in different B cell populations was
performed on the top 50 transcripts in each
cluster using Metascape (https://metascape.org)
(45). Receptor-ligand interactions were mined
from the scRNA-seq data using the NicheNet
algorithm (46). In brief, NicheNet analysis
was performed using the marker genes for all
clusters of dura B cell and dura fibroblast using
default settings. After calculation of interaction
scores between possible receptor-ligand com-
binations, pairs were filtered for those bona
fide interactions that were documented in the
literature and publicly available databases.

Single-cell BCR repertoire analysis

Sample demultiplexing and barcode process-
ing was performed using the Cell Ranger
Single-Cell Software Suite (10x Genomics).
CellRanger-5.0.12 was used to align reads to
the reference genome (vdj_GRCm38_alts_
ensembl-5.0.0) and assemble BCRs. BCR se-
quencing data was processed using the
Immcantation framework (immcantation.org)
(47, 48). Germline V(D)J gene annotation was
performed for all 10X Genomics BCR sequen-
ces using IgBLAST v1.16.0, with a curated set of
Ig reference alleles specific for the C57BL/6
strain of Mus musculus (49). IgBLAST output
was parsed using Change-O v0.4.6 (47). Addi-
tional quality control required sequences to be
productively rearranged andhave valid V and J
gene annotations, consistent chain annotation
(excluding sequences annotated with H chain
V gene and L chain J gene), and a junction
length that is a multiple of 3. Cells with exactly
the same barcode and BCR sequences between
different samples were excluded. Furthermore,
only cells with exactly one H chain sequence
paired with at least one L chain sequence were
kept. After processing, there were 52,509 cells
with paired H and L chains of which 19,447
had paired gene expression data.
B cell clonal lineages were inferred using

hierarchical clustering with single linkage
(50, 51). Cells were first partitioned based on
common H and L chain V and J gene anno-
tations and junction region lengths. Within
each partition, cells whose H chain junction
regions were within 0.07 normalized Hamming
distance from each other were clustered as
clones. This distance threshold was determined
by manual inspection to identify the local mini-
mum between the two modes of the bimodal
distance-to-nearest distribution. The clones
were further split based on the common L
chain V and J gene.
Mutation frequency was calculated for cells

by counting the number of nucleotide mis-

matches from the germline sequence in the
H chain variable segment leading up to the
CDR3. The calculation was performed using
the calcObservedMutations function from
SHazaM v1.0.2.

Statistical analysis

For flow cytometry and imaging data, graphs
and statistics were produced using the Graph-
Pad Prism 8 software package. Statistical dif-
ference between two groups was determined
by either two-tailed unpaired Student’s t test
(when both groups passed the Kolmogorov
Smirnov normality test) or two-tailed Mann–
Whitney U test (when at least one group did
not pass the Kolmogorov–Smirnov normality
test). When the effects of two independent
variables were considered, the two-way analy-
sis of variance (ANOVA) with Bonferroni post-
hoc test was used.Whenmore than two groups
were compared, one-way analysis of variance
(ANOVA) with Bonferroni post-hoc test was
used. All statistical analyses display individual
values for each biological replicate,mean value,
and standard error of the mean (SEM). Sta-
tistical significance was set at P < 0.05.
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Getting around the blood–brain barrier
The meninges comprise three membranes that surround and protect the central nervous system (CNS). Recent
studies have noted the existence of myeloid cells resident there, but little is known about their ontogeny and function,
and whether other meningeal immune cell populations have important roles remains unclear (see the Perspective
by Nguyen and Kubes). Cugurra et al. found in mice that a large proportion of continuously replenished myeloid
cells in the dura mater are not blood derived, but rather transit from cranial bone marrow through specialized
channels. In models of CNS injury and neuroinflammation, the authors demonstrated that these myeloid cells have an
immunoregulatory phenotype compared with their more inflammatory blood-derived counterparts. Similarly, Brioschi et
al. show that the meninges host B cells that are also derived from skull bone marrow, mature locally, and likely acquire
a tolerogenic phenotype. They further found that the brains of aging mice are infiltrated by a second population of age-
associated B cells, which come from the periphery and may differentiate into autoantibody-secreting plasma cells after
encountering CNS antigens. Together, these two studies may inform future treatment of neurological diseases.
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