硝酸鹽的運送、訊息傳導及利用效率
硝酸鹽運送機制
對大多數植物而言,硝酸鹽是最主要的氮源。吸收進植物體的硝酸鹽除了可立即在根部組織被利用,或儲存在液泡以備不時之需外,也能運輸到葉部組織再做利用或儲存。
透過研究 NRT1(PTR)硝酸鹽轉運蛋白家族,我們闡明了參與在吸收、木質部裝載和卸載以及透過韌皮部所執行的重新分配等數個關鍵步驟的新機制。
多項新發現已被寫入教科書內。目前,我們正嘗試找出負責從液泡汲取硝酸鹽的轉運蛋白,這是調控硝酸鹽體內平衡仍然未知的關鍵步驟。
硝酸鹽的訊息傳導機制
硝酸鹽同時也做為信號分子,調控著植物的生長與開花。雙親和性硝酸鹽轉運蛋白 CHL1 透過第101位蘇氨酸的磷酸化與否,在高、低親和性轉運模式之間作切換。除了是轉運蛋白(transporter),CHL1 還是硝酸鹽的感應器(receptor),我們稱之為轉運感應器(Transceptor)。
CHL1 透過雙親和性結合、磷酸化與否以及與兩激酶、一磷酸酶的動態交互作用, CHL1 可感知土壤中硝酸鹽濃度的大幅度變化,並誘導不同程度的基因轉錄反應。此機制已成為植物如何感知其他營養素的樣板。
NRT1.13 是 NRT1 家族中的另一個轉運感應器,NRT1.13 的研究讓我們知曉植物是如何感測體內硝酸鹽來調節地上部的生長型態和開花時間。
我們將繼續採用遺傳學,細胞生物學和生物物理學等方法來理解細胞間的通信和蛋白質間的動態交互作用是如何參與硝酸鹽濃度的感知及時間上的反應變化。
NUE:作物的氮利用效率
氮是影響農作物生產量的最主要因素。氮肥生產消耗全球能源的 1-2%。然而僅有 30-50% 所施用的氮肥能真正被作物利用,土壤中過剩的氮肥便會造成的嚴重環境汙染。因此,提高作物的硝酸鹽利用效率是永續農業的當務之急。除了應用 NRT1 轉運蛋白來增強農作物的氮利用效率外,我們也將利用全基因組關聯分析,系統性地找出新基因來改善作物的氮利用效率。
- PDF, 1990-1993, Department of Biology, University of
California at San Diego, USA
- Ph.D., 1990, Biology, Carnegie Mellon University,
Pittsburgh, PA, USA
- MS, 1985, Botany, National Taiwan University
- BS, 1983, Botany, National Taiwan University
- 2024, Academician, Academia Sinica, Taiwan
- 2024, TWAS Award in Biology
- 2021, International Member, the National Academy of Science, US
- 2021, Shang-Fa Yang Memorial Lecture Award, Taiwan
- 2019, ASPB Enid MacRobbie Corresponding Membership Award, US
- 2019, CTCI Science and Technology Contribution Award, Taiwan
- 2018, Taiwan Outstanding Woman in Science, Taiwan
- 2016, KIA (Khwarizmi International Award) Laureate, Iran
- 2014, Hou Chin Dui Outstanding Honor Award, Taiwan
- 2013, 57th Academic Awards from Ministry of Education, Taiwan
- 2003, 2010, Outstanding Research Award from National Science Council (MOST), Taiwan
- 2000, Outstanding Young Researcher Award from Academia Sinica, Taiwan
- Ho, C.H., Lin, S.H., Hu, H.C., Tsay, Y.F. (2009) CHL1
functions as a nitrate sensor in plants. Cell 138: 1184-
1194.
- Wang, Y.Y., Tsay, Y.F. (2011) The role of Arabidopsis
nitrate transporter NRT1.9 in phloem nitrate transport.
Plant Cell 23: 1945-1957.
- Hsu, P.K., Tsay, Y.F. (2013) Two phloem nitrate transporters,
NRT1.11 and NRT1.12, are important for
redistributing xylem-borne nitrate to enhance plant
growth. Plant Physiol. 163(2): 844-56.
- Tsay, Y.F. (2014) How to switch affinity? Nature 507 (7490): 44-5.
- Wang, Y.Y., Cheng, Y.H., Chen, K.E., Tsay, Y.F. (2018)
Nitrate transport, signaling and NUE. Annu. Rev. Plant
Biol. 69: 85-122.
- Chen, K.E., Chen, H.Y., Tseng, C.S., Tsay, Y.F. (2020)
Improving nitrogen use efficiency by manipulating nitrate
remobilization in plants. Nature Plants 6: 1126-1135.
- Chen, H.Y., Lin, S.H., Cheng, L.S., Wu, J.J., Lin, Y.C.,
Tsay, Y.F. (2021) Potential transceptor AtNRT1.13
modulates shoot architecture and flowering time in a
nitrate-dependent manner. Plant Cell 33, 1492-1505.
- Lin Y.C., Tsay, Y.F. (2023) Study of vacuole glycerate transporter NPF8.4 reveals a new role of photorespiration in C/N balance. Nature Plants (https://doi.org/10.1038/s41477-023-01392-2)
- Cheng Y.H., Durand M., Brehaut V., Hsu F.C., Kelemen Z., Texier Y., Krapp A., Tsay, Y.F. (2023) Interplay Between NIN-LIKE PROTEINs 6 and 7 in Nitrate Signaling. Plant Physiology (In press) DOI: 10.1093/plphys/kiad242
- 2021- Section Head for F1000/Faculty Opinions
- 2021- Associate Editor for Plant Physiology
- 2018- Contributing member for F1000/Faculty Opinions
- 2011-2020 Monitoring Editor for Plant Physiology