植物糖及缺氧訊息傳遞分子機制
植物根系發育分子機制
水稻是全球近一半人口的主要糧食,利用生物科技育種
耐各種逆境同時維持高產量的水稻,是一個很重要的課
題。水稻也是研究穀類作物基因功能重要的模式植物。
我們在水稻的研究包括:
- (1) 糖濃度平衡的調控- 糖濃度的平衡影響植物生長、
對逆境的耐受性、及最後的產量,我們研究糖調控
這些性狀的分子機制。
- (2) 淹水缺氧的訊息傳遞與調控- 大部份植物不耐淹水,
因為造成組織缺氧無法呼吸。水稻很特別,是穀類
中唯一可在水中發芽,及土壤淹水情況下生長的作
物。 我們研究水稻接收缺氧訊息、調控賀爾蒙、及
改變組織構造與代謝作用,來適應缺氧環境的分子
機制。
- (3) 根系發育與耐逆境能力- 植物根系構造對吸收土壤
水分與養分很重要,影響生長、對缺水與淹水的耐
受性、及產量。我們研究缺水與淹水調控水稻根系
發育的分子機制。
- (4) 水稻功能性基因體研究– 我們利用T-DNA 插入水稻基因方法,製造100,000 個基因活化或缺失的水稻基因突變種
原庫,及60,000 個突變基因資料庫,供全球學界使用。

- PDF, 1984-1988, Dept. Biology, Univ Rochester
Dept. Plant Biology, Cornell Univ USA
- Ph.D., 1984, Dept Plant Pathology
Univ. Arkansas, USA
- MS, 1979, Dept Plant Pathology
Natl Chung Hsing Univ.
- BS, 1975, Dept Plant Pathology
Natl Chung Hsing Univ.
- Hong, Y.-F., Ho, T.-H. D., Wu, C.-F., Ho, S.-L., Yeh, R.-H.,
Lu, C.-A., Chen, P.-W., Yu, S.-M. (2012) Convergent
starvation signals and hormone crosstalk in regulating
nutrient mobilization upon germination. Plant Cell 24:
2857-2873.
- Lin, C.-R., Lee, K.-W., Chen, C.-Y., Hong, Y.-F., Chen,
J.-L., Lu, C.-A., Chen, K.-T., Ho, T.-H. D., Yu, S.-M. (2014)
SnRK1A-interacting negative regulators modulate the
nutrient starvation signaling sensor SnRK1 in sourcesink
communication in cereal seedlings under abiotic
stress. Plant Cell 26: 808-827.
- Yu, S.-M., Lo, S.-F., Ho, T.-H. D. (2015) Source-sink
communication: regulated by hormone, nutrient, and
stress cross-signaling. Trends Plant Sci. 20: 844-857.
- Lo, S.-F., Fan, M.-J., Hsing, Y.-I., Chen, L.-J., Chen, S.,
Wen, I.-C., Liu, Y.-L., Chen, K.-T., Jiang, M.-J., Lin, M.-
K., Rao, M.-Y., Yu, L.-C., Ho, T.-H. D., Yu, S.-M. (2016)
Genetic resources offer efficient tools for rice functional
genomics research. Plant Cell & Environ. 39: 998-1013.
- Chen, Y.-S., Ho, T.-H. D., Liu, L., Lee, D.-H., Lee, C.-
H., Chen, Y.-R., Lin, S.-Y., Lu, C.-A., Yu, S.-M. (2019)
Sugar regulated interactions between MYBS2 and 14-
3-3 proteins enhances plant growth, stress tolerance
and grain weight in rice. Pro. Natl. Acad. Sci. USA 116:
21925-21935.
- Lo, S.-F., Cheng, M.-L., Lin, C.-W., Hong, Y.-F., Lee,
K.-W., Hsiao, Y., Hsiao, A.-S., Chen, P.-J., Wong, L.-
I., Chen, N.-C., Hsing, Y.-I., Reuzeau, C., Yu, S.-M.,
Ho, T.-H. D. (2020) RBG1 increases cell division and
auxin levels to enhance seed and root development and
stress recovery. Plant Biotech. J. 18: 1969-1983. (cover
story)